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Thermodynamic Extrapolation of

Rocket Performance Parameters

SANFORD GORDON!
FRANK J. ZELEZNIK®

NASA Lewis Research Center
Cleveland, Ohio

First and second partial derivatives of some thermodynamically defined rocket performance
parameters are presented. These derivatives are useful for the extrapolation and interpolation of
thermodynamic performance calculations for changes in combustion pressure, combustion en-
thalpy, pressure ratio, and area ratio. The accuracy of the extrapolation or interpolation is indi-
cated for a typical propellant combination.

OR SOME propellant systems, performance data are
needed over a wide range of conditions such as chamber
pressure, pressure ratio or area ratio, oxidant to fuel ratio,
and, occasionally, initial enthalpy. The thermodynamic cal-
culation of rocket performance is usually sufficiently difficult
to require the use of automatic computers. Because of the
cost and time involved in the computations, it is often not
feasible to explore the complete range of independent vari-
ables. For this reason, the problem of extrapolating or inter-
polating a limited number of performance calculations occurs
frequently.

The use of partial derivatives in extrapolating performance
data with considerable accuracy for moderate changes in the
independent variables was discussed previously by Gordon
and Huff (1).3 In Ref. 1, expressions were derived for first
partial derivatives of the logarithm of specific impulse, charac-
teristic velocity, and area ratio with respect to the logarithm
of chamber pressure. In addition, first- and second-order
corrections to impulse for a change in combustion enthalpy
were also given. A similar first-order correction for the effect
of combustion enthalpy (or heat of formation) on impulse was
described by Gordon (2).

In this report, the list of partial derivatives is extended to
include the derivatives of specific impulse I, specific impulse
in vacuum /..., area per unit mass flow rate A /w, area ratio ¢,
and characteristic velocity ¢* with respect to combustion
pressure P., combustion enthalpy k., pressure ratio P./P, and
area ratio e. Examples are given to illustrate the use of the
derivatives.
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Analytical expressions for the derivatives of parameters
with respect to oxidant to fuel ratio O/F can be derived; how-
ever, the method of derivation of these expressions is some-
what different from that used to obtain derivatives for a fixed
O/F, and, therefore will not be presented in this paper. All
derivatives in this paper are for a fixed O/F.

Effect of Change in Initial Conditions
on End Point of a Process

All the thermodynamic properties of a system of known
composition can be specified uniquely in terms of any two
thermodynamic functions, say a and 8. Thus the system can
be represented by a point in a two-dimensional space with
coordinates («,8). At any point in (@,8) space, not only are
all the thermodynamic properties of the system known, but
it is also possible to determine the rate of change of these
properties along some curve in (a,B3) space. Thus if ¢ is a
third thermodynamic function, the derivative (d8/da)y ex-
presses the rate of change of 8 with respect to a change in a
along a curve of constant . This partial derivative is the
usual thermodynamic first partial derivative discussed in
thermodynamie textbooks.

Thermodynamic Processes

A process in thermodynamics means that a system orig-
inally at some point (a,Bs) has been moved to a new point
(e,8). An infinitesimal process can be completely charac-
terized by a derivative of the form (d8/2a)y. A finite process
can be specified by giving a starting point (ao,B0), a path,
say a curve of constant ¥, and one of the coordinates of the
end point a. For a given path, the only independent vari-
ables of the process are the coordinates of the initial point
(e, B0) and a coordinate, say «, of the final point. The other
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coordinate of the final point, 8, and all other thermodynamic
functions are dependent variables in the process.

Let ¢ be any dependent thermodynamic variable associated
with the end point of a finite process. The rates of change of
¢ with respect to the independent thermodynamic variables
of the process are of two different types. For a change in ¢,
the usual type of derivative (0¢/0a)y is needed. However,
for a change in one of the coordinates of the initial points,
derivatives of the type (d¢/da)g, and (d¢/38:) «, are needed.
Expressions for the latter type of derivative are obtained in
the following section.

Derivatives Associated With a Finite Process

As indicated in the previous section, the process is defined
as taking place along a curve of constant y. Therefore

Yoo, Bo) = ¥(a, B) = ¥(a, @) (1l

Whatever change in y, results from a change in the initial
point (ap,B0) must be equal to the change in . This may be
expressed in differential form as

12 (Dtﬁo) (atﬁ) 5ll/>

—) d —} dB=|—+) d —) d 2
(aa())&l * + 0180 ao 60 aa @ @ + (ag& a L4 [ ]
Imposing in turn the conditions of constant «, and constant G,
gives the following desired expressions for the partial deriva-

tives of a function at the end point of a process with respect to
the initial coordinates:

%0\ _ (0¥0/0Bn)a, , (¢ (0a
<aﬁo>m ©¥/o0)e <aa>¢ <aao>m 13]

o) - Ofouls , (00) (20)
<aa0 Bo (b‘l//a‘ro)a + O« ¥ Qay Bo [4]

In Eqgs. [3 and 4] all the derivatives except (da/083s) and
(Qa/dap)g, are the standard thermodynamic first derivatives
and can be immediately evaluated. The two exceptions can
be evaluated for a specified form of the relation

a = ala Bo) [5]

Two forms of Eq. [5] are considered in this paper: o = k
and a = kya,, where k; and k; are constants. For a = ky, Eqs.
{3 and 4] reduce to

Gi)ee - GR)/GD).
G M o WU A

For the particular choice & = ki, Egs. [3 and 4] give

o oY

<8§;>ac,au/a - <£)>ao/(z—‘i>d [S}
2 = () /() o (0
(e~ GG+ (),

It may be seen that the right-hand sides of Eqs. [6 and 8]
are identical.

Application to Rocket Performance

First Derivatives of Thermodynamic Functions With
Respect to P, h., and P./P for an Isentrepic Process

In this paper, Egs. [6-9] are applied to an isentropic proc-
ess. For an isentropic expansion from P, and Ak, to an exit
pressure P, the following correspondences to functions in
Eqgs. [6-9] apply: sc = ¢, P. = ap, P = o, b = B, and
s = . From Egs. 6 and 8]
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s, o8 _ 1
- (ahc)Pc/<b_<P>P © T.2s/0¢)r (1]

From Eq. [7]

Op _ {9s. o\ _ —ve Os
(apc>h¢,P - <5Pc>hc /(bsf’)f’ T, /<D<p>1> (]

From Eq. [9]

(38),ore = G5,/ G), + 5. G)
OP.Jh,psp  \OP. hc/ dp)r = P.\dP/,
EYTCAN (T

-7,/ <a¢>P+Pc <aP>s 2]

For any ¢ selected, the right-hand sides of Egs. [10-12]
are in terms of the usual first partial derivatives. Bridgman
(8) presents a convenient scheme (given in many thermody-
namic textbooks) for expressing all first partial derivatives in
terms of three first partial derivatives, namely, (3k/3T)r =
cpy, Ov/0T)p, and (2v/0P)7. An equation of state is required
to evaluate these derivatives. In rocket performance caleu-
lations it is convenient to assume that the reaction products

obey an ideal equation of state with a variable molecular
weight

Pv = RT/M {131

It has been found useful in performance calculations to
calculate molecular weight derivatives rather than volume
derivatives to indicate changes in composition. From Eq.
[13] there follows

oV v dIn M

(b_71>p o [1 - (a In T)pil [14]
ov —v dIn M

(a»)T =7 [1 + (o 1np>r] (151

A further discussion of the molecular weight derivatives and a
method for their numerical evaluation is given by Gordon et
al. (4). With the aid of Bridgman’s tables (3) and Egs.
[13-151, all other first partial derivatives can be expressed
in terms of ¢, (0 In M/ In T)p and (@ In M/ In P)y. As
an example, assuming ¢ = T, Eq. [12] becomes

o) (o) L2 (o)
OP. Ju.pyr  T.[\oT/)r» P.\oP/,
-, T P T /(o>
_ Tl PT <_v)
Tc Ca P;Cp OT P

—~R T RT oln M
- PM.c, t P.Mc, [1 (a InT )P] (161

In a manner similar to the previous example, derivatives
were obtained from Eqs. [10-12] for ¢ = T, h, and p. Ex-
pressions for the logarithmic form of these derivatives are
given in Table 1. The logarithmic form was selected to pre-
sent the results in dimensionless form. ¥Expressions for
molecular weight derivatives are also given in Table 1. These
are obtained by considering molecular weight to be a function
of temperature and pressure and expanding by the chain rule
in differentiation. Derivatives of the form [0 In ¢/0 In
(P./P)1Pore = 010 /(@ In(P./P)], = —(0ln¢/0In P),are
also given in Table 1. Henceforth, derivatives at constant
P, and k. will be shown as derivatives at constant s. The use
of these derivatives will be discussed in a later section.

A word of caution is required about the derivatives with
respect to In k.. If a reference level for enthalpy is chosen so
that h. is negative, the logarithmic derivative must be re-
placed by a derivative with respect to k..
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Table 2 Second partial derivatives of I?

[a(an/a In Po)ke.po/p] o {( dInl ) (a In T) ( dln I ) [M (a In Mc) (a In M ]}
2In P, ho,Po/P dIn P./h.psp \oIn P,/ 1, p.sp dIn P/PJ. L M. \oIn P, /s, oIn P/ n.p.splf
r T [(bln Tc> B <alnT ]"
he — A T, Oln P,/ dln P./p,pP/pP

olnl’ ) [(blnT) (blnM) ]
Oln (P./P)/. L\OIn Pc/h. pP./P o1In Pc/ he.Pe/P

[ (012/0 In Pc)hc Po/P ] _ l:b(bl 2/°hc)Pc,Pp/P] 3
APe,Pe/P oln P, he,Pe/P

l:a(bﬂ/o In Po)ne,p/P| [b(bI /3 1In P/P )-] = 21:(
s he.Pc/P

dIn P./P dIn P,

a(al ’/bhc)Pc P./P

1?2 T (1 1)
e, Pe/P c T cp

o(dI2/dh,) P, P,/P} [a(bl’/b In PC/P).] _ Iz
| ol P/P dhe Pe.P:/P

r () nr
y J\omn Pc/P).

F9(012/0 In PC/P).:I
Ol P./P

-]
he — b Mc,T, dInT /o

a fd1n M _ oln M R vo — 1
(axn Pc) M.cp, [ (aln Tc) J Mepe  ve
b /dIn T¢ _ oIn M¢
(a In Pc)hc " Mo (bln Te )p,
Derivatives of Rocket Performance Parameters With
Respect to P., h., and P./P for Isentropic Expansion

Parameters that are usually of interest in performance cal-
culations are defined in the following equations, where it is
assumed that a consistent set of units is employed:

I = [2(h. — B)]/2 17
(4/w) = 1/pu = 1/pl [18]

e = (4/w)/(4/w), = A/A. (19]
* = PA/w). [20]

Lo = I + (A/w)P [21]

Cr =1/c* [22]

A specific set of units and associated dimensional constants for
Eqgs. [17-22] is given in Ref. 4.

Derivatives of the logarithm of I can be obtained directly
from the derivatives of the logarithm of h in Table 1. Thus,
for example

<blnI) _;h(blnh (23]
dInP. /e pn, I* \OInP.Jpsph,

Eqgs. {18-22] can be used to obtain derivatives of the re-
maining parameters in terms of the derivatives of the loga-
rithm I and the thermodynamic functions. The results are
included in Table 1.

Second Derivatives of Specific Impulse With Respect to
P, h.,, and P.,/P

An examination of Table 1 shows that the expressions for
the derivatives of the logarithm of I include only the thermo-
dynamic functions %, T, and M. Therefore, the second
derivative of the logarithm of I can be obtained by the
methods previously discussed. However, for purposes of
extrapolation, 72 is a better form than In I. (This will be dis-
cussed further in a later section.) The first and second
derivatives of I? can be expressed in terms of logarithmic
derivatives as follows:

ot dlnJ

= 2]
oy ! oy

[24a]
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oy InJ OdIlnI\folnTI

oy = 7 oy ( oy )( oz )] (240]
Detailed expressions for the second partial derivatives of I?
obtained by means of [24b] are given in Table 2.

The expressions for the first derivatives of the remainder of
the performance parameters in Table 1, unlike specific im-
pulse, include first derivatives of thermodynamic functions.
The second derivatives of these performance parameters are
therefore not included in this paper, inasmuch as they involve
second derivatives of thermodynamic functions which are
generally not available.

First Derivatives of Rocket Performance Parameters With
Respect to P, h., and ¢

The previous discussion of thermodynamic processes
showed that a process could be specified by giving the value
of two thermodynamic functions at the initial point, a path
connecting the final point and initial point, and one of the
coordinates of the final point. Thus for a given process, any
parameter of the process A can be considered a function of the
coordinates of the initial point and the coordinate of the
final point. For the isentropic expansion of gases in a rocket
nozzle, it is permissible to write

= NP, he, P./P) (25]
and for area ratio in particular
€ = (P, h, P./P) [26]

Eliminating P./P between the previous two equations gives
= MNP, ke, € (27]

where the functional forms of Eqs. [25 and 27] are not the
same.

If the functional relation in Eq. [25] were known, then this
would provide an alternate method of obtaining the first,
second, and fourth columns of derivatives in Table 1, i.e.,
©InAdInP)pyph, (In A/D1n h)p,p.p, and [0In N/0
In (P./P),]. Similarly, if the functional relation in Eq. [27]
were known, the partial derivatives (3 In A/0 In P, (0 In
A/0 In h.).p,, and (O In A/Q In €), could be obtained. How-
ever, expressions for these last three derivatives need not be
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Fig. 1 Comparison of accurately calculated specific impulse data

for stoichiometric H,-0, or Hy-O; with data extrapolated from the
reference point

dlnA (bln)\) _( dln A )
olnhi/.p, Olnh/p./pP. dIn (P./P)/,

(b ln e/b In hc)Pc/P,Pc

[0 In ¢/ In (P./P)], (32)
(a In >\> _ [2In )\ In(P./P)], (33]
olne/, [olne/ In (P./P)],

Second Derivative of Impulse With Respect to Area Ratio

An approximate second derivative of impulse with respect
to area ratio for constant P. and k. can be obtained by dif-
ferentiation of [33], assuming that [0 In ¢/0 In (P./P)] is
constant. This is a very good approximation for pressure
ratios greater than 10. With this assumption, there follows

s 212(1—7> olnI ‘|
[Oa(l(rf e))z], = [:12%;?/ Bl 3

Partial Derivatives for Extrapolation

The first and second partial derivatives given in Tables 1
and 2 can be used for extrapolation purposes by assuming
that the change in any one of the parameters A or functions ¢
can be obtained from a truncated Taylor series. Thus, for
any function f, neglecting derivatives higher than the second

Table 5 Comparison of accurately calculated characteristic
velocity data for stoichiometric H;-O, with data extrapolated from
reference point

he = 0 cal/g he = —190.6 cal/g h, = 629.1 cal/g
Pf, Accu- Extrapo- Accu- Extrapo- Accu- Extrapo-
psia rate lated rate lated rate lated
1000 7208 7208 7075 7077 7625 7641
600 7165 7166 7035 7034 7573 7599
100 7008 7017 6887 6886 7386 7451
¢ Reference point for extrapolation.

> (CE,, - x’O) +

oyf

) = fad) + g:
1
275 Az:dT;

£ (o

W
When only first derivatives are available, the last term in Eq.
[35] is omitted.

The accuracy obtained with Eq. [35] depends considerably
on the form of f and 2;. Those forms whose first derivatives
are the most nearly constant over the range of interest can be
expected to give the most accurately extrapolated values.

An indication of the desirable forms for f and z; can be ob-
tained by an examination of some performance data and
derivatives. In Table 3, data are given for stoichiometric
Hy(g)-O4(g) for P, = 1000 psia assuming equilibrium com-
position during isentropic expansion. Table 3 is the direct
output from an IBM 704 program.

The symbols used in Table 3 for some parameters are some-
what different from those used in the rest of this paper be-
cause the IBM printer does not contain characters such as

lower case letters, Greek letters, subscripts, or superscripts.
The following examples illustrate the differences:

) (& — 2 (x; — =% [35]

(DLI/DLPC)PC/P = (@InI/dIn P)p/phs.
(DLCS/DHC)PC/P = (3 In ¢*/oh)p./p.p,
(DLAR/DLPCP)S = [0 In ¢/ In (P./P)]

It can be seen from Table 3 that the derivatives [0 In e/01n
(P,/P)], are very nearly constant over a considerable range
of pressure ratio. It is to be expected, therefore, that a good
form of Eq. [35] for extrapolating area ratios to other pressure
ratios is

Olne

s [s 255 (o () ()]

In contrast, the large differences in the values for [0 In I/
d In (P./P)]; indicate that using In I for f and In(P./P) for =
in Eq. [35] would not give particularly good results. A more

Table 4 Comparison of accurately calculated area ratio data for stoichiometric H,-O, with data extrapolated from reference point

he = 0.0 cal/g he = —190.6 cal/g he = 629.1 cal/g
P./P P, = 1000 psia P, = 100 psia P. = 100 psia
Accurate Extrapolated Accurate Extrapolated Accurate Extrapolated
10.0 2.440 2.228 2.468 2.289 2.466 2.337
40.83 7.009 6.941 7.151 7.130 7.169 7.279
68.05 10.50 10.49 10.75 10.77 10.81 11.00
100.0 14.31° 14.31 14.69 14.70 14.81 15.01
300.0 35.05 34.75 36.28 35.70 37.02 36.45
400.0 44.39 43.84 46.04 45.04 47.22 45.98
600.0 61.92 60.83 64.44 62.49 66.66 63.80
800.0 78.38 76.75 81.77 78.83 85.21 80.49
1000.0 94.08 91.90 98.31 94.40 103.2 96.38

% Reference point for extrapolation.
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nearly constant set of derivatives can be obtained in this case
by multiplying the logarithmic derivatives by I, i.e.

oI olnl
lswesm = lsm@m. 1371
A still more nearly constant set of derivatives are
oI oln’
- . = 2 —_—
[a In (P./P) ] 2 [a In (P,.-/P)]. 138]

For specific impulse, therefore, a good form of Eq. [35] for
extrapolating to other pressure ratios is

12=(12)0+[ or :IOAIn (P./P) +

o1n (P./P) |,

! [ o r ]0 (A1n P./P)? [39
2 | 50 PPy ), A1 P ]

A different situation occurs for temperature. In Table 3
the derivative [0 In T/0 In (P./P)]; is fairly constant over
part of the range of interest (from P./P = 1 to about 100},
whereas another derivative form {07/0 In (P./P)]; is more
nearly constant over the remainder of the pressure ratio in-
terval. A further complication arises because the derivative
of temperature or logarithm of temperature with respect to
pressure ratio has a maximum. Extrapolation may, there-
fore, give very poor results no matter which derivative form
isused. For most chemical systems, the derivatives [0 In T /0
In (P./P)], are more nearly constant as a function of pressure
ratio than are the derivatives [0T/0 In (P./P)]..

Numerical Examples of Extrapolation

Specific Impulse

The use of the first and second derivatives permits the ex-
trapolation of specific impulse data with considerable ac-
curacy. This is illustrated by two numerical examples.
Both examples start with the data in Table 3 for a pressure
ratio of 100.

Example 1

Extrapolate I from P./P = 100 to P.,/P = 1000 (A In
(P./P) = 2.30259).

From Table 3,7 = 3820, [0In1/dIn (P./P)], = 0.08396,
and ¥ = 1.1215. From Eq. [24], [oI2/0In (P./P)], = 24,504,
whereas from the equation in Table 2, [0%(12)/0(In P./P)?], =
—2654.6. From Eq. [35]

I* = (382.0)2 + 24,504 (2.30259) + 3(—2654.6)(2.30259)*
I = 195.309
I = 4419

This is an excellent agreement with the accurately calcu-
lated value of 442.2 given in Table 3.

Example 2

Extrapolate I from P./P = 100 to 1000 (A In (P./P) =
2.30259), from P. = 1000 to 100 psia (A In P, = —2.30259),
from h, = 0 to —190.6 cal/g (from gaseous to liquid pro-
pellant).

Using the data in Table 3 for combustion chamber condi-
tions and for a pressure ratio of 100, the three first derivatives
of 1% from Eq. [24] are

(@1*/oIn Ppspa, =  2600.4
(oI*/0ko) p./p.p 28,648
[0I?/21n (P./P)], = 24,504
Avucgust 1962

Table 6 Comparison of interpolated performance parameters using two points and two slopes with accurately calculated data
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0

0

0
+0.001

+0.001

1.705
1.847
1.880
1.923
1.952
1.974

1.705
1.847
1.880
1.924
1.953
1.974

0 144.1 414.1 0

14.31

0 382.0 382.0 0 14.31

17.423
17.702
17.761
17.834
17.878
17.907

2469 2469 0 17.423

100°
300
400
600
800

1000*

0
=+0.1

+0.1

440.0
446.0

440.0

0
-~0.04

—-0.09
—-0.07

35.05

35.05
44 .35

0
0

+0.1

413.8
421.2

413.8
421.2

—-0.001

17.701
17.761
17.834
17.878
17.907

0
0
-1
-1

2218

2218

446.1

44.39

0
0
0
0

2151
2055
1985
1930

2151

454.0
459.3

61.92 454.1

78.38
94.08

430.9 61.83
78.31

437.4

431.0

2054

0 459 .4 +0.1
463.3

0

437 .4
442.0

1984
1930

0

0

463.3

0

94.08

442.0

0

2 Points used to obtain interpolated data.
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Numerical values for all the quantities that appear in the
expressions for the second derivatives in Table 2 are given in
Table 3 with the following three exceptions:

oln M, e
(b In P, )h; = 0.015198 (see footnote, Table 2)
oln T, .
<b—ln—P,>h‘ = 0.041197 (see footnote, Table 2)
Oln M
= (. Table 1
(b o Pc)Pc/P,hc 0.007821 (see Table 1)

The six second derivatives of 72 are (with subscripts omitted
for brevity)

2%(12)/0 (In P.)? = — 182.69
2%(12)/d In Pk, = 1.5610
2*(1%)/d In PR In (P./P) = 162.67
0%(12) /ohet = —0.0036205
(I /dhd In (P/P) = 5.3690
(1% /d(In (P./P) ]2 = —2654.6

Using the first and second derivatives in Eq. [35] gives

It = (382.0)% 4 2600.4(—2.30259) + 28,648(—0.1906) +
24,504(2.30250) + 1(—182.69)(—2.30259)% +
1(—0.0036205) (—190.6)2 + 1(—2654.6)(2.30259)2
+ 1.5610(—2.30259) (— 190.6) + 162.67 X
(—2.30250)(2.30259) + 5.3690(— 190.6)(2.30259)

I* = 180,778

I = 4252

This is in very good agreement with an accurately calculated
value of 426.5.

Some additional numerical comparisons of accurate data
with data extrapolated for various changes m P, h., and
P./P are given in Fig. 1 for specific impulse, in Table 4 for
area ratio, and in Table 5 for characteristic velocity. The
extrapolated data are all obtained from one accurately cal-
culated reference point corresponding to P, = 1000 psia, A, =
0, and P.,/P = 100. The derivative forms used were first and
second derivatives of I2, first derivatives of In ¢ and first
derivatives of ¢*. Itis apparent that the extrapolated values
are in excellent agreement with the accurately calculated
values for a considerable range of extrapolation.

Partial Derivatives for Interpolation

Derivatives can be used to increase the accuracy of inter-
polation in a specified range. This is because each derivative
is approximately equivalent to having an additional point
in the specified interval. For example, if only functions are
known at two points, only linear interpolation is possible.
However, if the first derivatives of these functions are also
known at the two points, cubic interpolation is possible.
With second derivatives also known, quintic interpolation is
possible. Thus, for example, the following equation may be
obtained:

I* = A + B{In(P./P)] + Clln (P/P)|* +
Dlln (P./P)}* [40]

where the coefficients A, B, C, and D are determined by the
solution of four simultaneous equations involving the values
of 72 and first derivatives of 1%, each at two pressure ratios.
To illustrate the accuracy of interpolation which can be ob-
tained by this technique, values were interpolated for T, M, ¢,
and I at pressure ratios of 300, 400, 600, and 800 using cubic
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equations derived from the data of Table 3 at pressure ratios
of 100 and 1000. The functional forms for I and e which gave
the best results as functions of the logarithm of P./P are I*
and In e. Both the linear and logarithmic forms gave es-
sentially the same results for T and M.

The interpolated results are compared in Table 6 with the
accurately calculated values of Table 3. Included in Table 6
are values of Cr and Iv.. Values of Cr were calculated from
¢* and the interpolated values of I by means of Eq. [22], using
consistent units. Values of I... were calculated from c*
and the interpolated values of I and ¢ by means of an alternate
form of Eq. [19]:

Lowe = I + c*¢/(Po/P) [41]

again using consistent units. As may be seen from Table 6,
the interpolated results are in excellent agreement with the
accurate results.

In the case of specific impulse, a quintic equation can be ob-
tained from data at two pressure ratios, inasmuch as both first
and second derivatives are available. Specific impulse
values interpolated over the entire range of pressure ratios
from 10 to 10,000 from a quintic formed from data at these
two points were within 0.1 Ib-sec/lb of accurately calculated
values.

Data, are often desired at assigned area ratios. By use of
derivatives obtained from Eq. {33], accurately interpolated
parameters corresponding to assigned area ratios can be ob-
tained in a manner similar to that just discussed for assigned
pressure ratio interpolation.

Nomenclature

A, B, C, D = coeflicients, Eq. [40]

A/w = area per unit mass flow rate

c* = characteristic velocity

cp = heat capacity at constant pressure per unit mass
Cr = thrust coefficient

h = enthalpy per unit mass

I = specific impulse, Eq. [17]

Ige = specific impulse in vacuum, Eq. [21]
ki, k2 = constants

M = molecular weight

O/F = oxidant to fuel weight ratio

P = pressure

P./P = pressure ratio

R = universal gas constant, 1.98726 cal/mole-°K
8 = entropy per unit mass

T = absolute temperature

U = veloeity

v = gpecific volume

Z,Y,2 = any variable

a,B,0,¢ = any thermodynamic variable

€ = area ratio

A = process parameter

0 = density

v = isentropic exponent (0 In P/ ln p)
Subscripts

c = combustion chamber

0 = initial coordinate of a finite process
t = throat

Superscript

0 = reference condition
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